Applications linéaires de $\mathbb{R}^n \to \mathbb{R}^m$

Une application linéaire (de \mathbb{R}^n vers \mathbb{R}^m) est une fonction

$$T: \mathbb{R}^n \to \mathbb{R}^m, \quad \vec{x} \mapsto T(\vec{x})$$

telle que

$$T(\lambda \vec{x} + \mu \vec{y}) = \lambda T(\vec{x}) + \mu T(\vec{y}), \quad \forall \vec{x}, \vec{y} \in \mathbb{R}^n \text{ et } \lambda, \mu \in \mathbb{R}$$

Autrement dit, l'image d'une combinaison linéaire est la combinaison linéaire des images.

En particulier, une application linéaire satisfait toujours $T(0_{\mathbb{R}^n})=0_{\mathbb{R}^m}$.

Applications linéaires et matricielles

Théorème

Soit $T: \mathbb{R}^n \to \mathbb{R}^m$. Alors

$$T$$
 linéaire \Leftrightarrow $\exists A \in M_{m \times n}$ telle que $T(\vec{x}) = A\vec{x}$.

On appelle A la matrice canonique de T. Elle se construit ainsi :

$$A = \begin{pmatrix} T(\vec{e_1}) & \dots & T(\vec{e_n}) \end{pmatrix}$$

où $\vec{e_i} = (0, \dots, 1, \dots, 0)$, avec le 1 en *i*—ème position, sont les **vecteurs** canoniques de \mathbb{R}^n .

Applications linéaires surjectives

 $T: \mathbb{R}^n \to \mathbb{R}^m$ est surjective si

$$\forall \vec{b} \in \mathbb{R}^m, \ \exists \text{ au moins un } \vec{x} \in \mathbb{R}^n \text{ tel que } T(\vec{x}) = \vec{b}.$$

Equivalences à la surjectivité

Soit $T: \mathbb{R}^n \to \mathbb{R}^m$ linéaire et $A \in M_{m \times n}$ sa matrice canonique. Les affirmations suivantes sont équivalentes :

- T est surjective;
- $\forall \vec{b} \in \mathbb{R}^m$, le système $A\vec{x} = \vec{b}$ est compatible;
- A admet un pivot par ligne;
- Span(colonnes de A) = \mathbb{R}^m (les colonnes de A engendrent \mathbb{R}^m)

Applications linéaires injectives

Définition

 $T: \mathbb{R}^n \to \mathbb{R}^m$ est injective si

$$\forall \vec{b} \in \mathbb{R}^m, \ \exists \ \mathsf{au} \ \mathsf{maximum} \ \mathsf{un} \ \vec{x} \in \mathbb{R}^n \ \mathsf{tel} \ \mathsf{que} \ T(\vec{x}) = \vec{b}.$$

Equivalences à l'injectivité

Soit $T: \mathbb{R}^n \to \mathbb{R}^m$ linéaire et $A \in M_{m \times n}$ sa matrice canonique. Les affirmations suivantes sont équivalentes :

- T est injective;
- ② le système $A\vec{x} = 0_{\mathbb{R}^m}$ admet la solution unique $\vec{x} = 0_{\mathbb{R}^n}$;
- A admet un pivot par colonne;
- les colonnes de A sont linéairement indépendantes ;

Applications linéaires bijectives

Définition

 $T: \mathbb{R}^n \to \mathbb{R}^n$ est **bijective** si elle est à la fois surjective et injective. C'est à dire

$$\forall \vec{b} \in \mathbb{R}^n, \ \exists \ \text{exactement un} \ \vec{x} \in \mathbb{R}^n \ \text{tel que} \ T(\vec{x}) = \vec{b}.$$

Equivalences à la bijectivité

Soit $T: \mathbb{R}^n \to \mathbb{R}^n$ linéaire et $A \in M_{n \times n}$ sa matrice canonique. Les affirmations suivantes sont équivalentes :

- T est bijective: A est inversible: A admet n pivots:
- pour tout $\vec{b} \in \mathbb{R}^n$, le système $A\vec{x} = \vec{b}$ admet une unique solution $(\vec{x} = A^{-1}\vec{b})$
- \bullet les colonnes de A sont linéairement indépendantes et engendrent \mathbb{R}^n ;